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An ever newer development in the CA is the lattice
Boltmann (LB) technique [13]. The standard LB techniqueThis paper introduces an approach for the simulation of the hydro-

dynamic behaviour of gas–solid fluidized beds via the use of lattice only describes averaged behaviour, whereas in fluidized
gas cellular automata. This approach is based on a two-speed beds fluctuations are important. For this reason the more
model, developed by U. Frisch, B. Hasslacher, and Y. Pomeau. Simu- classical LGCA technique is used. Nowadays also fluctuat-
lation runs for different configurations of the automaton produce

ing LB techniques are used, but this has not been re-results that can be compared to actual data. The simulations show
searched in this work.when and how bubbling will occur. Values for the bubble diameters

as a function of bed height, as well as bed porosities in two horizontal The simulation of fluidized beds differs from the
planes have been obtained from the simulations. From these results simulation of the Navier–Stokes equation as for the
correlation diagrams and the Kolmogorov entropy are calculated. latter there is a well-developed differential equation. No
Generally, the results of the simulations are qualitatively in good

real unifying and exact differential equations, describingagreement with experimental observations, showing that this new
the complete behaviour of fluidized beds, exist. Andersonapproach could provide a useful tool in predicting the fluid dynamic

behaviour of fluidized beds. Q 1997 Academic Press and Jackson [1] and Pritchett et al. [16] were one of
the first to develop the two-fluid model, describing both
the gas and solid phase as continuous and fully interpene-

1. INTRODUCTION trating. Later many others [4, 15] reformulated so-called
granular kinetic theory into the solid stresses and viscosity

A lot of research has been done to predict the behaviour to resemble the solid flow behaviour. The description
of fluidized beds. Unfortunately there is still much confu- of the solid phase by a continuous phase, however,
sion and contradiction in the reported literature. The re- will only be valid under certain assumptions. Another
ports often produce recommended correlations, but little drawback of these models, is the large computational
in the way of unifying theory [12]. In this research a physical

cost.model is developed and implemented into a cellular autom-
Another approach to simulate fluidized beds is the ap-aton. This approach can be used to predict some of the

proach from molecular dynamics. Particles are describedaspects of the physical behaviour of the fluidized bed. This
as ideal round spheres, as described by Hoomans et al.model, however, cannot yet be compared to all quantitative
[10], and Seibert and Burns [21]. These models have verymeasurements, and therefore more research will be needed
high computational costs and can only be used for smallon this field.
systems and a short period of time.Cellular automata (CA) were first introduced by von

The behaviour of a fluidized bed is similar to fluid behav-Neumann [24], describing idealized selfreproducing sys-
iour. The two fluid model uses this property of the fluidizedtems. Hereafter the CA models have been used for numer-
bed to simulate its behaviour. The LGCA model presentsous applications, from the evolution of spiral galaxies [8]
macroscopic fluid behaviour and could also be suitableto phase transitions [14].
for the simulation of fluidized beds. This is researched inThe usage of cellular automata became popular for simu-
this paper.lating fluids, when a new family of cellular automata were

To simulate fluidized beds with a LGCA model, thedeveloped: the lattice gas cellular automata (LGCA) [6].
microscopic behaviour of the fluidized bed is implementedThis type of cellular automata is mainly used for the simula-

tion of fluids, i.e., the Navier–Stokes equation. Rothman into the LGCA. Therefore the standard LGCA is modified
[17] has used this method to look at multiphase flow, a to include gravity and gasflow. The results of the simula-
similar subject of this paper. tions will hopefully represent the macroscopic behaviour

of a fluidized bed. The result is a computationally very
inexpensive model.* Author to whom correspondence should be sent.
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The presented topics in this paper are: Three LGCA models are: (a) the Hardy, Pomeau, and
Pazzis (HPP) model [11], (b) the Frisch, Hasslacher, and

1. LGCA, Pomeau (FHP) model [6], and (c) the face-centered hyper
2. fluidized beds, cubic (FCHC) model [3]. The HPP model is not suitable

for realistic simulations. The FHP model is used for two-3. modification of the LGCA to incorporate superficial
dimensional simulations. It is built up from a two-dimen-gas flow and gravity,
sional triangular lattice, where each node has six nearest4. results.
neighbours and one rest particle. A two-speed model was
also used in this research. Then each node has 12

2. LGCA
neighbours which particles can reach in one time step. The
FCHC model is a pseudo four-dimensional model whichThe simulation model is an automaton that can be de-
is used for three-dimensional simulations. It has 24 near-fined as a D-dimensional Bravais lattice with fixed points,
est neighbours.called nodes. Every node has a state, which is determined

It can be easily seen that the two-speed FHP model hasby the previous state of that node and the states of its
the same isotropic characteristics as the classic FHP model.neighbors. The nodes are connected via links, which cannot
The proof that this model is isotropic is given by Frischbe occupied by more than one particle. Particles travel
et al. [6].along the links and collide at each node. Usually all parti-

Strictly speaking LCGA models lack Galilei invariance.cles have the same speed and the same mass. The state of
There is no Galilei transformation that maps an allowedone node is then defined as
microstate of the LGCA onto another one. However,
within the fluidized bed we consider flow velocities muchn(r) 5 hni (r); i 5 1, ..., bj, (1)
less than the particle velocity, so that nonGalilean invari-
ance is not a serious difficulty.

where r is the position vector of the node, ni is the state The collision operator is a square matrix, when a lookup
of link i, and b is the number of links, which is the same algorithm is used during simulation. For the two-speed
as the number of neighbours. FHP model, the collision operator thus is a 213 3 213 matrix.

At every time step the automaton is updated in two This size still fits well into computer memory. The FCHC
steps: (a) the collision step, and (b) the propagation step. model, however, requires a 224 3 224 matrix. It is generally
The collision step is defined as not possible to fit matrices of this size into hard- or

software.
s9 5 C ? s, (2)

3. GAS–SOLID FLUIDIZED BEDSwhere C is the collision operator, s9 is the output state,
and s is the input state. Each transition is assigned a proba- To implement gas–solid fluidized beds into cellular au-
bility: A(s R s9) $ 0. The probability only depends on s tomata, the microscopic influences are approximated. The
and s9 and does not depend on the position of the node. main forces on a single particle in a gas–solid fluidized
The collision step only redistributes the particles at a node. bed, are the drag force from the upward flow and the
The particles are only given a new direction and are not gravity force. These forces are defined as
moved. A collision operator must conserve certain physical
quantities, like mass and momentum. The collision opera-
tor must also agree with the exclusion principle, stating Fg 5

f
6

(rp 2 rg) gd 3
p (4)

that every link can only be occupied by one particle at the
most, and the Stueckelberg condition, leading to a revers-
ible solution. It is important, however, not to conserve too Fd 5 S200(1 2 «)

Re «3 1
2.33
«3 D f

4
d 2

p
rgu2

2
, (5)

many quantities, so-called spurious conserved quantities.
For this a stochastic behaviour of the model is important.

Moving the particles is done by the propagation step. where Fg is the gravity force, Fd is the drag force, rp is the
The propagation step is defined as density of the particles, dp is the average particle diameter,

« is the local porosity, rg is the density of the flow, Re is
ni (r*) R ni (r* 2 ci ? Dt), (3) the Reynolds number, and u is the velocity of the flow.

Equation (4) is the buoyancy force and Eq. (5) is an empiri-
cal equation for the drag force on a particle, based on thewhere Dt is the amount of time for one time step, and ci

is defined as the velocity of the particles in direction i. One correlation by Ergun [5] for the frictional pressure drop
through a bed of particles.time step consists of a collision step and a propagation step.
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The fluidization condition where the drag force equals
the gravity force, is called minimum fluidization. From Eq.
(5) one can see that at high local porosity the drag force
is relatively low. This means that areas with high local
density will go up, and areas with high local porosity will
go down.

In Eq. (5), the basic assumption is made that the pressure
from the flow is the same at every point in the bed. When
voids, called bubbles, occur in the bed, however, the gas
tends to flow into the bottom part of the bubbles. This
leads to extra drag on the top of a bubble, increasing the
bubble growth.

The hydrodynamic behaviour of bubbling gas–solid flu-
idized beds can be described as chaotic [22, 23, 20]. Chaotic
systems are governed by nonlinear interactions between
the system variables. Due to this nonlinearity, these deter-
ministic systems are sensitive to small changes in initial
conditions and are, therefore, characterized by a limited
predictability. In other words, information about the initial

FIG. 1. The Kolmogorov entropy as a function of configurations instate of the system is lost when it evolves in time. The
increasing superficial gas velocity (actual data are taken from [22]). Thechaotic dynamics of a system are fully represented by its
lines are drawn to guide the eyes.

attractor in the phase space, which describes the time evo-
lution of the system and which can be quantified by charac-
teristic invariants.

likelihood method to estimate Kolmogorov entropy fromThe low-dimensional chaotic behavior of fluidized beds
(measured) time series has been reported by [18].is due to the behaviour of the rising and interacting bubbles

Schouten et al. [20] have derived an empirical relation-which is a phenomenon that takes place at relatively large
ship between the Kolmogorov entropy and characteristicscale. This particular behaviour with a small number of
fluidized bed properties, such as the superficial gas velocitydynamic modes is actually a result of the high-dimensional
U0, the minimum fluidization velocity Umf , the bed diame-behaviour of the particles due to the interaction with the
ter dt , and the settled bed height Hs , according toflowing gas and to particle collisions and friction. These

gas–solid and solid–solid interactions that are represented
by a large number of dynamic modes at small scale thus K(bits/s) 5 10.7 SU0 2 Umf

Umf
D0.4 d 1.2

t

H 1.6
s

. (6)
finally lead to low-dimensional chaotic behaviour at larger
scale. A similar phenomenon may be present in the model
in this paper, where very high dimensional (stochastic) The Kolmogorov entropy was estimated from time series

of pressure fluctuations that were measured in the centerbehaviour of simulated particles at the small scale finally
lead to large scale chaotic structures (i.e., bubbles). of a bed of fluidized Geldart B particles [7], at the position

of the settled bed height.These chaos characteristics of dynamical systems can be
estimated from time series of only one of the system’s Vander Stappen et al. [23] have also performed experi-

ments in which they measured the Kolmogorov entropycharacteristic variables, such as pressure fluctuations in
bubbling gas–solid fluidized beds, via a technique called as a function of the superficial gas velocity in the vicinity

of minimum fluidization to investigate the onset of chaos(attractor) reconstruction [22].
One of the most important chaos characteristics is the in gas-solid fluidized beds. It was found that between mini-

mum fluidization and the freely bubbling state, an interme-Kolmogorov entropy [9], which measures the rate of loss
of information (expressed in bits of information per unit diate regime exists, where the Kolmogorov entropy first

increases and then decreases but always is lower than inof time), and which quantifies the limited predictability of
chaotic systems. In general, the Kolmogorov entropy is the fully developed regime. This is illustrated in Fig. 1.

Numerous empirical relations have been determined forlarge for very irregular dynamic behaviour (like pressure
fluctuations in turbulent gas flow), while it is small in case of bubbles in gas–solid fluidized beds. These equations are

widely accepted in present fluidized bed sciences and formmore regular, periodic-like, lower dimensional behaviour
(like in slugging beds). The limiting values for Kolmogorov a good basis to check the results of a fluidized bed model.

A correlation between the bubble rise velocity and theentropy are infinity for complete random sets, and zero
for completely periodic systems. A practical maximum bubble diameter is [2]
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[18, 19]. The bubble quantities are used to verify bubble
ubr 5 0.711Ïgdb,

db

dt
, 0.125. (7) correlations which were discussed in the previous section.

5. SIMULATION RESULTS AND DISCUSSIONThe bubble diameter versus the bubble height fits the equa-
tion [12]

The two-speed FHP model was introduced to improve
the simulation results of the one-speed model. The number

db 5 A0 1 A1 ? hA2b , (8) of possible velocity gradients in the one-speed model
proved to be too small. The results of the two-speed model

where the literature value of A2 is between 0.75 and 1.0. predict the actual behaviour much better than the standard
FHP model. The visual representation resembles photo-
graphs of fluidized beds very well.4. SIMULATING FLUIDIZED BEDS WITH LGCA

To simulate the fluidized bed system, first, a momentum
is defined for all directions, upward links having a positiveWhen simulating fluidized beds with LGCA, the micro-
momentum and downward links a negative one. The restscopic behaviour is estimated and implemented into the
particle has zero momentum. A rest particle is includedcellular automaton. This is done for the three influences
to increase the number of possibilities of momentum anddiscussed in the last section:
velocities at a node. Hereafter the momentum change is

1. Gravity force. The gravity force is equal for all parti- calculated for every possible particle distribution. This is
cles because it is not a function of the porosity. done by adding the momentum change according to the

three effects described in the previous section. For in-2. Drag force. The drag force is a function of the poros-
stance, for every particle at a node one unit of momentumity, and thus, it is a function of the number of particles at
is subtracted for gravity.a node. At high local porosity, the drag force will be small

Then the collision operator is constructed. This is a largeper particle. If, however, the local porosity is low, the drag
matrix, linking all input momentum possibilities to a calcu-force will be larger per particle. The drag force is only
lated output possibility, regarding required conservationsaccounted for in the z direction. This assumption can be
(mass) and the required momentum change. If more thanmade if most gas travels straight upward to the top of the
one output possibility exists, this is stored in a separatebed, only moving in one direction. Around solid concentra-
matrix. When such a condition is needed, one is randomlytion gradients, like bubbles, this is not completely true.
picked from the possibilities. This is to ensure the needed3. Pressure gradients near bubbles. The top of a bubble
stochastic character of the system.is detected in the system, if all links going up are occupied

Ten different systems with different configurations wereby particles travelling upwards and all links going down
simulated, visually compared, and the porosities calculatedare unoccupied. If the top of a bubble is detected, momen-
in the two horizontal planes were correlated. This wastum is added, because such places attract gas also from
done to give insight into the consequence of different con-the sides [12]. This is to correct the error in the assumption
figurations and to determine if different regimes could bemade under point 2 above for bubbles.
simulated. Figure 2 shows a correlation diagram of a sys-
tem. Figure 4 shows the visual representation of the system;The total momentum change only affects the z direction.

When constructing the collision operator, all possible 50 bubbles were measured in each system, and the aver-
aged results are shown in Table I and in Figs. 5 and 6.input states are taken into account and linked to an appro-

priate output state. During the simulation, an output state The 10 systems are different regarding momentum defi-
nition on the links between the nodes and the influence offor the input state is looked up in the collision table. Some-

times one input state can lead to multiple output states. the drag force and the bubble pressure gradient correction.
The ratios of the bubble diameter versus the height ofTo ensure the stochastic behaviour of the system, a condi-

tion for the simulations with LGCA, a random choice of the bed correspond to literature values, up to 80% of the
bed height. The curves representing bubble velocity versusthe possible output states is made.

During the simulation various quantities are measured: the bed height, however, do not correspond with data from
the literature. The bubble velocity is almost constant and(a) the porosities of two horizontal planes in the system,

and (b) the size and location of certain bubbles. The com- the same in all simulated configurations. This can be seen
from the bubble velocity and from the correlation dia-puted porosities in two planes can be correlated. The corre-

lation between these two planes gives insight into the veloc- grams. LGCA do not allow large velocity gradients, be-
cause the momentum at a node is limited to certain values.ity and the uniformity of the velocity of the particles in

the bed. Time series of the calculated porosity in a plane If the required momentum becomes greater than that cer-
tain value, the model does not allow this increase.can be used for the estimation of the Kolmogorov entropy
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FIG. 3. The Kolmogorov entropy as a function of the bed diameter.FIG. 2. The correlation of the porosities measured in two hori-
zontal planes.

obtained from measuring in-bed diameters only up to 40
cm ID.Ten systems in increasing superficial gas velocity were

Storing the whole FCHC collision table in memory issimulated. The superficial gas velocity is increased, by in-
not possible. The implementation of the FCHC model thuscreasing the drag force on the particles. The exact superfi-
requires the computation of all possible collisions of parti-cial gas velocity, however, cannot be extracted from this
cles in each node at every time step. This is done in theincrease, and thus, the superficial gas velocity is not linear

with the system number. The Kolmogorov entropy was
determined for all 10 systems. The result is shown in Fig. 1.
The calculated Kolmogorov entropy from the simulations
behaves in the same way as the Kolmogorov entropy that
was estimated from pressure fluctuations in a real fluidized
bed of 10 cm ID [23]. This means that the two-speed FHP
model is able to reproduce actual trends in the chaotic
dynamics of gas–solid fluidized beds.

The Kolmogorov entropy was determined for 12 simu-
lated systems in increasing bed diameter. The result is
shown in Fig. 3, which clearly shows an increase of the
Kolmogorov entropy with the bed diameter up to 100 LU,
where LU stands for lattice unit. Beyond 100 LU saturation
takes place. This saturation is not visible in Eq. (6), but
maybe this is due to the fact that this equation has been

TABLE I

The Fit Parameters of Bubble Diameter vs Bed Height for
Systems 1 through 9

System number
Fit-

parameter 1 2 3 4 5 6 7 8 9

A2 0.82 0.86 0.84 0.81 0.76 0.82 1.0 1.0 0.81
FIG. 4. Visual representation of simulated fluidized bed.
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The main and surprising result of the simulation runs,
is that bubbles form in the fluidized bed, even though this
macroscopic phenomenon was not implemented before-
hand. Also the chaotic properties and some bubble correla-
tions of the calculated system resemble actual parameters.

A problem of LGCA models is that they do not allow
large velocity gradients. This results in a constant bubble
velocity in all the simulated systems. This can be seen in the
fact that Fig. 6 does not correspond with Eq. (7). Another
drawback is that all the configurations behave alike. The
bulk of the fluidized bed has the same velocity in all simu-
lated configurations. This is because the freedom of the
particles is limited.

The simulation of fluidized beds, however, can give in-
sight into and predict some important features of real flu-
idized bed reactors. After more research into the influence
of the configuration and into the behaviour of the chaotic
properties of the simulated fluidized bed, using this method
could provide a useful additional tool to predict the behav-FIG. 5. The bubble diameter versus the bubble height.
iour of gas–solid fluidized beds.
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